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Abstract 

A formula is derived which expresses the symplectic volume measure on the moduli space of 
flat connections over a closed Riemann surface C in terms of the corresponding volume measures 
for the surfaces ,8Zi and &, when the latter have one boundary component each. 0 2000 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

We work with a closed oriented connected surface 22, which may be decomposed into 
compact oriented surfaces Et and C2 sewn along a common boundary aEi, which is 
assumed to be connected. Fix a basepoint o E 8 E; . We shall assume that 

(i) the surface 27 is orientable and is equipped with a fixed orientation, 
(ii) the surface Xi, for i = 1,2, has genus gi > 1, 

(iii) each a& is connected, and 
(iv) Z is obtained by sewing Et and & together along 8 Zi . 

Consider loops Af , B’, , . . . , Ai;, Bi, , C’ generating the fundamental group nt (Ei , o), 

subject to the constraint that C’K,, (A{, Bi, . . . , Ai, , LX:, ) is the identity in rrt (Ei , o), for 
i = 1, 2, and C’ = a&. Here K,, is the function given by 

- 
We take the orientations on Et and 222 to be such that C’ = C2. 
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Then ni(E, o) is generated by A:, B,!, . . . , AA,, Bj,, A:, BF, . . . , A&, B&, subject to 

the constraint that K, (A f , Bi , . . . , AA,, Bi, , A:, Bf, . . . , A&, Bi,) is the identity, where 
g is the genus of the surface E and is given by 

g = g1 + g2. 

Let G be a compact connected semisimple Lie group. The hypothesis that G is semisimple 
is not of essential significance, but will be used. The group G acts on G2’ by conjugation. 

We shall often use the product commutator maps 

K, : G2’ + G: (al,bl, . . ..a.,b,) I--+ b,‘a,‘b,a,...bl’al’bjal. 

The moduli space of flat G-connections over J3 can be identified in a standard canonical 
way with 

M” = K,‘(e)/G. 

Let 0 be a conjugacy class in G. The moduli space of flat G-connections over JCi having 
the holonomy around a _Ei lying in 0 can be identified with 

MO, (0) = flgi,1e(e)lG3 
where fl,, 0 denotes the map 

n r,O : G2’ x 0 + G : (x, c) H flr,@(x, c) = cK,(x). 

The moduli spaces M”, (0) and MO are, in general, not manifolds but unions of mani- 
folds of different dimensions. It will be convenient to extract, therefore, certain subsets of 
these moduli spaces which are manifolds of maximal dimension. 

Denote by M%; (O)o the subset of M”c, (0) arising from points in fls;_ro (e) where the 

isotropy group of the G-action is Z(G). Then Mti (O)o is a smooth manifold of dimension 

(2g - 2) dim(G) + dim( 0). It is proven in Proposition 4.5 that Mi, (O)o is a dense open 

subset of M”c, (0) for almost every conjugacy class 0. 

Let At be the subset of A0 consisting of points where the isotropy group of the G-action 
is Z(G) . There is a standard symplectic form 3 on the manifold Mt = A!$ G, arising from 
Yang-Mills theory [ 1,143. Denote by ~015 the corresponding symplectic volume measure 
on Mt. 

We shall actually be concerned with a subset of M!$ Let 4 be the subset of A0 = 
K;‘(e) c G2sl x G2g2 consisting of the points where the isotropy group of the conjugation 
action of G on the first 2gt factors as well as that on the second 2g2 factors is Z(G). Let 
M; = d/G. 

There is also a symplectic formE@ on the moduli space M’& (0)o. This has been studied 
in [2,9,12]. The corresponding volume measure ~015, has been studied in [ 111. 

Let fi be a continuous G-invariant function on G2sl x G, for i = 1,2, and let f : 
G2fil+2g2 + R be given by 

f(a, b) = fi(a, K,, W’)f2@, Kg,@)-‘), 

for all a E G2”l and b E G2g2. 
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Our principal result is a formula which decomposes the integral J-M0 f d vol n in terms of 
0 

the integrals Jm;, (8)0 fi d vol n,, , where d ~015 and d ~015, are integration with respect 

to the symplectic’ volume measures. Recall that MS, (0)c is, generically, a dense open 

subset of MO,, (0). 

Theorem 1.1. Let f, fl , f2 be as above, and denote by the same letters the corresponding 
induced functions on the moduli spaces. Then 

s ,M” f dvolz= gk dc 
0 

x det(1 - Adc-‘)-I 
s M;, (+A 10 

fl dvol- 0 r-j< 1 
where dc is unit-mass Haar measure on the compact connected semisimple Lie group G, 
vol (T) is the Riemannian volume of any maximal torus T in G. The integrand is meaningful 
on a dense open subset of G. 

This result, in a slightly sharper form, was proven in [4] for G = SU(2) by using an 
analogous sewing formula for the (lattice) quantum gauge field measures over the surfaces 
Z; and taking the classical limit. In Section 6 of the present paper, we derive this sharper 
form for SU(2) and show how it can be used to compute the symplectic volume of the 
moduli space of flat SU (2) connections. 

Doubtless, a more general disintegration formula exists (an appropriate integral ver- 
sion of the “cutting formula” (4.30) in Witten’s paper [14]). However, since clear analytic 
forms of the symplectic volume for surfaces with more than one boundary component 
have not appeared in the literature, we focus our attention on the case of surfaces with one 
boundary component. Presumably this will shed light on the technical issues of the general 
case. 

Moduli spaces of flat connections are not, in general, smooth manifolds in any natural 
way, but are unions of strata. Thus it is necessary to take great care in working on nice enough 
subsets, as well as verifying that such nice subsets are big enough. Section 4 is devoted to 
isolating various dense sets of points where calculations work smoothly. Sections 2 and 3 
provide, respectively, the algebraic and integral identities that are needed to sew together 
the integrations over the moduli spaces. 

2. Determinant identities 

In this section we shall prove an identity of determinants of matrices which will be useful 
later. 

Let V and W be finite dimensional inner-product spaces, and A : V -+ W a linear 
map. If Ker(A) # {0), or if V = (0}, then we define det(A) = 0. If on the other hand, 
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A (# 0) is an isomorphism onto its image A(V), then by the determinant of A we shall 
mean 

det A = the determinant of a matrix of A relative to orthonormal bases in V 

andA( (2.la) 

Thus det A is determined up to sign, but is otherwise independent of the choice of bases. In 
other words, 1 det A 1 is independent of the choice of bases. 

If A: V + W and B: W --+ Z are linear maps between finite dimensional inner-product 
spaces then 

I det(BA)l = I det(B)lJ det(A)l, (2.lb) 

if A is an isomorphism onto W or if B is an isometry (in which case 1 det BI = 1 unless 
w = {O)). 

Consideration of matrices shows that 

det(A((kerA)l) = det(A*lImA). (2.lc) 

Proposition 2.1. Let X, Y (# (0)) beJinite dimensional vectorspaces equipped with inner- 
products, and let V be a subspace of X. Let L1, L2 : X + Y be linear maps such that 

LllV’ =0 and L4V =O. 

Let 

L = Ll + L2, 

and write N = Ker(L). Then: 
(i) there exists a 

unitary isomorphism I : N @ N’ + V @ V’ 

and a 

linear isomorphism J : Y @ Y + Y @ Y, with IdetJl = 1, 

such that 

J((LIIV) @ (L2lV% = (LIP? @ WIN? (2.2a) 

(ii) The maps LllV : V + Y and L21Vl : V’ + Y are surjective if and only if 
LllN : N += Y and LlNl : N’ -+ Y are. 

(iii) The following equality of determinants holds: 

IdetLTlldetLGI = ldet(LrlN)*jldetL*l (2.2b) 

Proof. (i) Define I by: 

I : N G3 NI + V @ VI : (a, b) H ((a + b)v, (a + b),l), 
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wherein the subscripts signify orthogonal projections onto the corresponding subspaces. 
Identifying N $ N’ and V G3 V’ isometrically with X (by (x, y) H x + y). we see that 
I corresponds to the identity map on X, and is thus a unitary isomorphism. 

Let L’ : Y -+ Nl c X, be a left-inverse for the injective map LIN’; thus L/L(b) = h 
for every b E N’. Then we define 

where 

J1 : Y cl3 Y -+ Y @ Y : (a, b) H JI (a, b) = (a, a + b), 

J2 : Y $ Y + Y @ Y : (a, b) H J2(a, b) = (a - L,L’b, b). 

By considering matrix representations for Jt and J2, it is seen that I det JI I = I det J2 I = 1. 
Since J1 is an isomorphism, it follows by (2. lb) that 

ldet JI = ldet J21 ldet J1I = 1 (2.2c) 

Then for any (a, b) E N 63 N’, we have: 

J((LIIV) @ WzIV%Ua, b) = J(Ll@ + b)v, Lz(a + b),l) 

= J(LI (a + b), L2(u + b)) 

= J2(L1 (a + b), L(u + b)) 

= J2(L1 (a + b), L(b)) 

= (Li(u + b) - L,L’L(b), L(b)) 

= (LI (a), L(b)). 

This proves Eq. (2.2a), and part (i). 
(ii) follows directly from (i). 
(iii) We observe that, with appropriately restricted codomains (for instance we are taking 

LT: Y + VinsteadofLT: Y + X): 

(LlIV)* = LT, (L2lV’)* = L;, and (LIN’)* = L*. 

In view of this, we may take adjoints in Eq. (2.2a) to obtain: 

Z*(LT$L;)J*=(L,IN)*@L*, asmapsY@Y + N@N’, 

wherein again some of the operators are taken with restricted codomains. Taking determi- 
nants (which, by (2.lb), is not affected by restriction of codomains), and using the deter- 
minant of products given in (2. lb), and the fact (2.2~) that det J equals 1, we obtain the 
determinant formula (2.2b). 0 

We shall apply the above lemma to a specific situation. 
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Let g = g’ + g2, where g’ , g2 2 1. As usual, G is a compact connected semisimple Lie 
group whose Lie algebra g is equipped with an Ad-invariant inner product. Let K,: G2g + 
G be the product commutator map: 

K, : G2R + G : (a’, b’, . . . , ag, bg) H +,‘bgag -4+z~‘b,a,. 

Denote by C’ the map obtained by projecting G2K + G2g’ on the first 2g’-components 
and then composing with K,, . Let C2 : G2g -+ G be obtained by composing the projection 
on the last 2g2-components with Kg,. Thus K, = C2C’ and so 

K;’ dK, = C,’ dC’ + (Ad C,‘)C2-’ dC2 (2.3a) 

Let 

L’ = C,’ dC’ and L2 = (Ad C,‘)C2-’ dC2 (2.3b) 

We view L’ and L2 as maps g2R + g, with g being the Lie algebra of G, by appropriate 
left translations. We shall apply Prop&tion 2.1, and for this purpose we shall use: 

L = L’ + L2 = Ki’ dK, and N = ker(K;’ dK,) (2.3~) 

and the subspace 

v=g 2g’ $ (0) $ . . . $ (0) c p - 

(recall that g > 2). Then L 11 V’ = 0 and L2 1 V = 0. 
Let do = Kg’ (e). Consider the identification: 

(2.3d) 

(C, Id’)-‘(h) + K,‘(h) x K,‘(h-‘) 

(Xl,Yl,... 9X,>Y,) * (h,Yl, . . ..Xg.‘Yg,),(Xg,+l,Yg,+l,...,Xg,+gz,YR,+gz)) 

(2.3e) 

Lemma 2.2. Considerapoint (a, b) E (C’ Id’)-’ (h) which is such that K,, is non-critical 
at a and Kg2 is non-critical at b. Then there is a neighborhood U of a, and a neighborhood 
V ofb such that Ki’ (h) n U, K,, (h-‘) n V, do fl (U x V), and (C’ [do)-’ (h) n (U x V) 

are smooth, codimension dim G, submanifolds of G2gl, G2g2, G2gl$-2g2 and G2g1+2g2, 
respectively. Moreover; the mapping in (2.3e) is an isometry of Riemannian manifolds when 
restricted to the neighborhood U x V of (a, b). 

Proof. Let U be a neighborhood of a on which K,, is not critical, and V a neighborhood 
of b on which Kg2 is not critical. Then K;’ (h) fl U, being a level set in U of a smooth 
function with no critical points, is a smooth, (2g’ - 1) dim G-dimensional submanifold of 
G2g’. Similarly, KG’ (h-l) fl V is a submanifold of G2g2. The expression for dK, given 

in (2.3a) shows that Kg has no critical points in U x V, and so do n (U x V) is a smooth, 
codimension dim G, submanifold of G2g lying in U x V. 

For p E U x V, the tangent space Tpdo is N = ker K,(p)-’ dK,I,. Applying the 
determinant identity of Proposition 2.1 (ii) to the operators described in (2.3a,b,c), shows 
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then that dC) I,, maps the tangent space Tpdo onto g. Thus (Cl Ido)-’ fl (U x V) is a - 
submanifold of G2g. 

The fact that the mapping in (2.3e) is an isometry is apparent. 0 

We will need later the following. 

Lemma 2.3. Let (a, 6) E G2gl x G”’ A be as in the previous lemma. Then 

I det (dK,)* I I det (d(Ci Id'))* I = I det (dK,, )*I I det (dKSqz)* I (2.4) 

where the derivatives on the left are evaluated at (a, b) while on the right dK,?, is at 
a E G2xl and dKsz is at b E G”Q. 

Proof. Recall the operators Li , Lz, and L, described in Eqs. (2.3a,b,c), with all derivatives 
evaluated at the point (a, b). Note that we have L I 1 N = d (Cl Id’). Applying Proposition 2.1 
(iii), we have 

1 det (dC))*ll det (dCz)*I = I det (dK,)*l( det (d(C) Id”))*l, 

where all derivatives are at the point (a, b). The left side of this is clearly equal to the right 
side of (2.4). •I 

3. Some useful integration and disintegration formulas 

The following disintegration formula can be deduced from results in standard sources on 
geometric measure theory (Theorem 3.2.12 in [6]) but we include a proof for completeness 
and also so that we can tailor the statement to our needs. 

Proposition 3.1. Let K: M + N be a smooth mapping between Riemannian manifolds. 
Let NK = K (M \CK), where CK is the set of points where K is not submersive, i.e. the 
rank of dK is less than dim N. Assume that CK # M. Suppose I$ is a continuous function 
of compact support on M. Let oh be the Riemannian volume measure on K-’ (h)\Ck (this 
is a submantfold of M \ CK when h E NK). 

If q5 vanishes in a neighborhood of Ck, then 

ht-+ 
s 

4 doh is continuous on NK , (3.la) 
K-’ V)\CK 

and 

where oM and oN are the Riemannian volume measures on M and N, respectively. 

(3.lb) 

If dim K-l (h) = 0, the Riemannian volume Oh is understood to be counting measure. 
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Proof. Since M \ CK is a non-empty open set on which K is a submersion, NK is a non- 
empty open subset of N. For any u E NK, the set K-’ (u)\CK is a non-empty open subset 
of K-‘(u), and being a level set of the function K I(M \CK), which has no critical points, 
is a submanifold of M: 

Fix h E NK, andx, E K-‘(h)\CK. (3.lc) 

Since K is a submersion at x*, there is a coordinate system x in a neighborhood W of x* 
in ~CK and a coordinate system in a neighborhood U of h in NK such that K(W) = U and 
K 1 W corresponds, in the coordinate systems, to projection on the first dim(N) coordinates. 
Let V = (KIW)-‘(h) = K-‘(h) fl W. Then, taking the coordinate system x to be such 
that x (W) is a cube, there is a diffeomorphism: 

@:UxV+W, (3.ld) 

such that K o Cp : U x V + U is projection on the first factor, i.e. 

K(@(u, v)) = u for all u E U, (3.le) 

IfdimK-‘(h)\CK =OthenwetakeV={x,}. 
Let (u, v) E U x V, and w = @(u, u). Consider 

d@(,,,) : T,,N $ T,V + T,M = [ker dK,]l + ker dK, (3.lf) 

Let B: T,N + [ker dK,li denote the composition of the partial derivative Dt@(,,,): 
T, N -+ T, M with the orthogonal projection on [ker dK,,,]l. Then 

(dK,) 0 B = (dK,) 0 DI@(,,,) by(z’e) Identity map on Tu N. 

So B = A-‘, where A: [ker dK,]l + Tu N is the isomorphism given by 

A dAf dK,][ker dK,]’ (3. lg) 

On the other hand, by (3.le), the partial derivative Dz@(~,~): T,V += T,M has image 
ker dK,. 

Thus we have the following “matrix” for d@(,,,) with respect to the decomposition in 
(3.lf): 

T,N T,,V 
[ker dK,]l A-’ 

[ 

0 
ker dK, * D2@(u,v) 1 (3.lh) 

where D2@(U,v): T, V + ker dK, is the partial derivative of 0 in the second variable. It 
should be noted that the diagonal blocks listed in (3. Ih) do indeed form “square matrices”. 
Thus (using (3. lg) for the second line): 

I det d@(,,,) I = I det A-’ I I det Dz@(~,~) I 
= ldet dKz]-‘]detD2@(,,,)]. 

(3.li) 

In case dim K-‘(h) = 0, the term det D2@ does not appear. 
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We shall work with a continuous function f on M having compact support contained in 
W. 
Then: 

/)dm=/wfdw=~xv f[@h u)ll det d@(,.,)I dw(u) dab(u) 

and so, by (3.li), we have, with m = @(u, v) from now, 

(3.1.0 

Now, for u E U, the function @: U x V -+ W restricts to 

@(u, .): v + (rl(u)\cK) n w, 

and V is an open set in K-‘(h) \CK. Recalling that a, denotes the Riemannian volume 
measure on K-‘(~)\CK, we have 

I det &@(u,u)l dm(v) = @(u, .I* da,(m) (3.lk) 

(Viewing da,(m) as being specified by eT A. . . A e,” for some orthonormal basis (e 1, . , e,. ) 
of T,(K-‘(~)\CK), Eq. (3.lk) is a restatement of the definition of ( det D20(n.I,)).) 

Thus, for all u E U, 

1 ck-3 m%.u) I dab(u) = 

I det dK; I s K_,(u),CK f(v’), det ;K;,, daU(v’) (3’11) 

Since f is supported in W = @(U x V) and K o @(u, v) = u, the right side of Eq. (3.11) 
is 0 if u E NK \ K (support of f), the latter being an open set containing NK \ U. 

Replacing f by fl det(dK)*l, and noting that the left side of (3.11) is continuous in U, 
proves (3. la). 

Combining (3.11) with (3.lj), we then obtain 

= s [s NK K-1 (u)\CK f (“) , ‘it?;;, , ] daNy(u) (3.lm) 

This proves (3.lb). 0 

The following topological observation, which we restrict to a form which can be deduced 
from the preceding disintegration result, will be useful. Note first that a subset S of an 
n-dimensional manifold M has measure zero if for any open subset U of M which is 
diffeomorphic to R" , the set U f’ S is the diffeomorphic image of a set of Lebesgue measure 
zero in R” . 

Corollary 3.2. Let K: M -+ N be a smooth submersion from a manifold M to a manifold 
N, and assume that the topology of M has a countable base. If U is a dense open subset of 
M then for almost every y E N, the set K-’ (y) n U is a dense open subset of K-l (y). 
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Proof. Assume first that M and N are Riemannian manifolds, with M having finite volume 
as well as the countable subcover property, and K: M + N is a submersion of M onto N. 
The countable subcover property, together with local compactness, implies that there is 
a sequence of functions fn on M, each continuous of compact support, such that 0 5 
f,,(x) f 1 for every x E M. Then, using the disintegration formula (3.lb) and monotone 
convergence, we have 

m(M) = 
1 

dW(u). (3.2a) 

Now there is also a sequence of continuous functions gn on M, each of compact support, 
such that 0 5 g,(x) t lo for every x E M. Then, by monotone convergence, we have 

~MW) = s [s duu (x> 
1 

dW(u). 
N K-IWW I det dK,*I 

(3.2b) 

Since U is dense in M, they have the same measure, and so, using also finiteness of 
CM(M), we conclude that [K_l(U),U da, (x)/I det dK,* I is 0 for almost every u E N, and 

so a, (K-’ (y) \ U) = 0 for almost every y E N. Therefore, K -’ (y) fl U is a dense open 
subset of K-‘(y) for almost every y E N. 

Consider now general manifolds M and N, with M having the countable subcover prop- 
erty. To prove the general case, it will suffice to assume that N is an open ball in Rm and 
the submersion K: M + N is surjective. Each point x of M has an open neighborhood 
V, whose closure is compact and is contained in an open set diffeomorphic to an open 
ball in Rn. The result of the preceding paragraph is applicable to the restricted function 
K: V, -+ K(V,), and so K-‘(y) f~ U fl V, is dense in K-‘(y) fl V, for almost every 
y E N (this is trivially true for y outside K (V,)). To show that K-l (y) fl U is dense in 
K-’ (y) for almost every y E N, select a countable set of points x1, x2, . . E M such that 
U, V,,, = M. Then for y outside a set of measure 0 in N, the set K-’ (y) n U fl vrn is dense 
in K-‘(y) fl VI,!, for each n. For such y, if W is an open subset of K-’ (y) disjoint from U 
then W n Vxn is empty for each II, and so the union W is also empty. Thus, for y outside a 
set of measure zero in N, the set K-’ (y) fl U is dense in K-’ (y). 0 

Recall that K,: G2R + G : (al, 61, . . . , ug, bg) H b;‘a;‘b,a, . . . b;‘a;‘blal. For 
c E G, denote by 0, the conjugacy class of c in G. We work with the map 

l70,,~ : G2R x 0, + G : (p,x) H xK&). 

A point (p, x) lies on L&‘,, (e) if and only if x E 0, and Kg(p) = XT’. Since K, is 
equivariant under the conjugation action of G on its domain and codomain, it follows that c 
is a regular value of K, if and only if every point on 0, is a regular value of Kg. From the 
derivative of 17ec,, (see (3.3~) below), we see that the identity e is a regular value of l70,,~ 
if c-t (or, equivalently, c) is a regular value of K,. In this case, Q&(e) is a submanifold 

of G2R x 0,. 
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Proposition 3.3. Let f : G2g x G += R be a continuousfunction which is invariant under 
the conjugation action of G on G2g x G. Let 0, be the conjugacy class of c E G, and 
assume that c-’ is a regular value of the map K,: G2R -+ G. Denote by f * the function 
f* : G2R + R given by f*(p) = f (p, Kg(p)-‘). Then, for any regular value c E G of 

KP 

s da 

“(;‘.<(e) 
f - vol (O,.) 

det dl7&, - s K; ’ (c- ’ ) 
f”db 

< /’ ‘. det dK,* ’ 
(3.3a) 

where da denotes Riemannian volume, and vol (8,.) is the Riemannian volume of 0,. (taken 
as 1 if c E Z(G)). 

Proof. Disintegrating the left side of (3.3a) with respect to the projection map pr2: G2” x 
Oc + Oc : (p, x) H x by means of the formula (3.1 b), we have 

s 
f 

da 

flc”<!,&,@) det dl$& 

s s da = dvolec(x) (3.3b) 
(4< K,qi(I-~)xlxl f det(dpr21ker d%~.,)*detdfl&,,’ 

where da always denotes Riemannian volume measure. 
Now 17(-)c,,q = pr2 + C,, where C, : G2R x O< += G : (p,x) H K,(p). So 

D$, dDc+r.R = Ad(C;‘) dpr2 + CR' dC, 

Applying the determinant identity of Proposition 2.1 we then have 

(3.3c) 

det dC,* det dpr; = det dL$,, det(dpr21 ker dlTs,,,)* (3.3d) 

If c E Z(G) then (3.3~) holds trivially, and so (3.3d) continues to hold if we set det(d pr2)* = 
1 and det(dpr21 ker dLre),,s)* = 1. Even if c $ Z(G), dpr2 : Tc~.~~)(G~~~ x 0,) --+ T,O, 
is simply the projection on the second factor and so det d prz = 1. Substituting this in (3.3d) 
and going back to (3.3b) we have 

s f 
da 

“&(e) det dn$c,R = s 

da 
dvolec(x) 

6, s K,+++) f det(dC,)* 
(3.3e) 

The inner integral on the right equals JKml_,) f * da/det(dK,)*. Any x E 0,. is of the 

form ycy-’ for some y E G. Then theXisometry G2” + G2g : p H ypy-’ carries 
K;’ (CC’) isometrically onto K,‘(x-‘). The determinant det(dKglp)* is also invariant 

when p is replaced by ypy-I, because the metric on g is Ad-invariant. Thus (3.3e) reduces - 
to 

s da 

4<‘.,@ 
f 

det cl”;,.,, 
= vol (O,,) 

s K;‘(C-‘) 
f* do 

det(d KR)* 
0 

Suppose G is a group acting smoothly by isometries on a Riemannian manifold M, and 
assume that M/G has a smooth structure such that the quotient map q: M -+ M/G is a 
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smooth submersion. Then there is a natural Riemannian structure, the “quotient metric”, 
induced on M/G as follows : if V, w E T,(M/G), then (u, w) is defined to be (v’, w’), 
where n’, w’ E [ker dq,/]’ C T,f M project by dq,! to IJ and w, respectively, and x’ is any 
point in q- ’ (x). If G is a compact Lie group, M a Riemannian manifold, and if the action of 
G on M has the same isotropy group H at every point, then H is a closed normal subgroup 
of G and the compact quotient group G/H acts smoothly and freely (and isometrically) 
on M. In this case, M/G 2: M/(G/H) has a unique smooth structure which makes the 
quotient projection q: M + M/G a submersion and this is, in fact, a principal G/H-bundle 
(see [5, 16.14.1 and 16.10.31). 

Lemma 3.4. Let G be a Lie group acting smoothly and isometrically on a Riemannian 
mantfold M: 

G x M + M: (x, m) H ym(x) = xm. (3.4a) 

Assume that there is a smooth structure on M/G such that the quotient map q : M + Ml G 
is a smooth submersion. If f is any G-invariant Borelfunction on M, then 

LfdoM=LG i ~01 (y(G)) dw/G, (3.4b) 

(either side existing if the other does) where vol (y(G)) is the function on Ml G whose 
value at any point is the Riemannian volume of the G-orbit over that point. 

Thus if G is compact, and the isotropy group of the G-action is everywhere the same 
subgroup H, and if the Lie algebra g of G is equipped with an Ad-invariant metric, then - 

/ 
f dcrM = vol(G/H) .? 1 det dylh’l daM/c, 

M 
(3.4c) 

(either side existing if the other does) where h is the Lie algebra of H, o denotes Riemannian 
volume on the appropriate spaces (taken as counting measure when the space is discrete), 
and f is the function on M/G induced by f. (In particular if H is$nite then (3.4~) holds 
with vol (G)/#H for vol (G/H).) 

Proof. When M/G is equipped with the quotient metric, we have det dq* = 1. Then (3.4b) 
follows immediately from Proposition 3.1. Next, for (3.4c), we need to only observe, in addi- 
tion, that since y induces a diffeomorphism G/H -+ y(G) and since det dy ]/_z’ is constant 
along an orbit, the volume of the orbit is given by vol (y(G)) = vol (G/H) det(dy l/-r’). 

Applying (3.4b) to the case where the (sub)group H acts by right translations on G, and 
taking f = 1, we have vol (G/H) = vol (G)/ vol (H). In particular, if H is finite then 
vol (G/H) = vol (G)/#(H). 
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4. Some useful dense subsets 

In this section we shall obtain some useful dense subsets of spaces which we will work 
with in Section 5. 

We work with integers gt , g2 L 1, and g = gr + g2. Recall the product commutator map 

K, : G2’ + G : (al, bl, . . . , a,, b,.) H b;‘a,‘b,a, . . . b;‘a;‘b,a,. (4.1 a) 

If 0 is any conjugacy class in G, we also have the map 

l7 r,. : G2’ x 0 + G : (x, c) H fl,.c-,(x, c) = cK,(x). (4.lb) 

The following facts will be useful for us (for (i) see Section 3.7 in [7] or Proposition B.111 
in [8], and Proposition 4.2.3 in [13] for (ii)). 

Fact 4.1. 
(i) Let K, : G2’ + G be the product commutator map, and for each p E G2’, )/.r : G + 

G2’ : x H xpx-’ the orbit map. Then ker dK,(x)* = ker dy,, for every x E G2’. 
In particular, x is a critical point of K, if and only if the isotropy of the G-action is 
discrete. 

(ii) The product commutator map K, : G2’ -+ G is surjective. 
(iii) The subset of G2’ consisting of all points where the isotropy group is Z(G) is dense 

and open. 

For (ii) and (iii) we need G to be semisimple, i.e. that the center of the compact group G 
is finite. 

For (iii), it is proven in [8] that there is a point in G x G where the isotropy of the 
conjugation action of G is Z(G). Therefore, for any r > 1, there is a point in G2’ where 
the isotropy of the conjugation action of G is Z(G). Since the subset of minimal isotropy 
in a connected manifold is dense and open [3], it follows that the subset U of G2’ where 
the isotropy of the conjugation action of G is Z(G) is a dense open subset of G”. 

The following observation has been used in [lo] without detailed proof. 

Lemma 4.2. For any integer r 2 1, the regular values of K, : G2’ + G form a dense 
open subset of G. 

Proof. Let K: M + N be a smooth map between compact manifolds, and let d be a metric 
on M. We will show that the regular values of K form a dense subset of N. By Sard’s 
theorem, the image of the critical set of K has measure zero in N. Let c be a point in the 
complement of the image of the critical set of K, i.e. c is a regular value of K. Assume that 
c E K(M). Each point x E K-l (c) has a neighborhood V, in M on which K is submersive. 
Since K (V,) is open in M, it follows, in particular, that c is in the interior of K(M). Let 
E = inf{d(x, M\U,,,-I(,.V,) : x E K-‘(c)). Since K-‘(c) is compact, E > 0. For any 
x E K-‘(c), K is submersive in the c-ball aroundx. Let V, = {m E M : d(m, K-‘(c)) < 
E }. Thus K is submersive at every point of V,. We claim that there is a neighborhood of 
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c in N whose inverse image under K is contained in V,. If not there would be a sequence 
of points x, E M \ V, such that K (x,) + c. Since M is compact, we may assume that 
the sequence x,, converges to some x, which must necessarily lie outside V,. But on the 
other hand, K(x) = lim, K (x,) = c, which would be impossible since K-‘(c) c V,. This 
contradiction shows that every regular value of K has a neighborhood whose inverse image 
is contained in the set of points where K is submersive, i.e. the neighborhood consists only 
of regular values (of course, this is trivially valid of the regular value is not in K(M)). Thus 
the set of regular values of K is open in N. By Sard’s theorem its complement has measure 
0. Thus the set of regular values of K is also dense in N. •I 

Lemma 4.3. 
(i) Let I > 1. The set U of all points in G 2r where the isotropy group of the conjugation 

action of G is Z(G) is a dense open subset of G2’. The image K,.(U) is a dense open 
subset of G. 

(ii) Let gl , g2 > 1. Denote, for i = 1,2, by U’ the subset of G2s1 where the isotropy group 
of the conjugation action of G is Z(G). Let U12 = Kg, (U’) fl K,, (U2) and 

Ui ‘Af Kgi’ (U12) n U’. 

Then Ui is a dense G-invariant set in G2s’ 1 and K,, (241) = Kg2 (Uz) is dense in G. 
Moreover Ksi (Ui)-’ = K,, (Ui). 

(iii) With U’ and Ui as above, we have 

(U’ x U2) f~ K;‘(e) = (Ul x 24) II K,‘(e). 

(iv) Let Ai be the subset of do = K;’ (e) given by 

4 = (24’ x U2) n K,‘(e). (4.2a) 

Let CI : G2s + G be the map given by composition of the projection on the first gl 
components followed by K,, ; let C2 be the map given by composition of the projection 
on the second g2 components followed by Kgz. Then di is non-empty and 

U12 dzf C,(d;) = C2(A$ 

is a dense open subset of G; in fact, U12 = Kg, (U’) n K,, (~2). 

Proof. (i) According to Facts 4.1 (iii), the subset U of G2’ where the isotropy of the 
conjugation action of G is Z(G) is a dense open subset of G2’. Since, by Facts 4.1 (ii), 
dK, is surjective at all points of U, it follows that K,.(U) is an open subset of G. We will 
show that K,(U) is dense. We have K;’ (Kr (2.4)) > u = G2’. Since, by Facts 4.1 (ii), K, 
is surjective onto G, we conclude that K,(U) is dense. 

(ii) Let U’ denote the subset of G2gi consisting of points where the isotropy is Z(G). By 
(i) this is a dense open subset and K,, (U’) is dense and open in G. By Facts 4.1(i), KsI is 
of full rank at every point in U’ and so Ksi is an open mapping on U' . So the set 

u12 = Kg, W’> n KgzU2) 
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is a dense open conjugation-invariant subset of G. Let 

Uj = K;1(u’2) nzl = (KRip4~)-1(u12). 

This is an open subset of G 2gi . If it were not dense there would be a non-empty open set V in 
its complement; since the open set ZA’ is dense in G2Rf, we may assume that V c U’ . Then 
K,, (V) would be a non-empty open set in G in the complement of 17’2, which contradicts 
the fact that U’ 1 is dense in G. The contradiction shows that U; is dense in G2”1 . Moreover, 
K,! (LX) = (K,; IU’)(K,, IU’)-‘(U’z) = U’2 because the image of K,, IU’, i.e. K,, (LA’), 
contains U’2. It is readily seen that there is a permutation TT of { 1, 2, . . . , 2r - 1,2r) such 
that if x E G” and x, is the element of G2’ obtained by permuting the components of x by 
x then K, (x,) = K,(x)-’ . This shows that the sets K,?, (U’ ) are invariant under 4’ H y-’ 
Therefore, so is the set 

K,, (u;) = UIZ = Kg, W’) n KK2(U2). 

(iii) It is readily seen that there is a permutation rr of { 1, 2, . . ,2g2 - 1,2gz} such that if 
XEG ‘Q and xx is the element of G’“? obtained by permuting the components of x by n 
then KRz(x,) = Kg,(x)-‘. Let (a, b) E K;‘(e) n (24’ x 24’). Then a E U’, b E U2, and 

K,, (a) = Kg2 (b)-‘, and the latter is equivalent to K,, (a) = K,?? (b,). Since l4: = U’, we 
have K,, (a) E K,, (U’) fl Kg? (U2) = U’2, and so, by definition of U’, a belongs to U’ 
Reversing the roles of a and b, we see that b E Uz. 

(iv) By (ii), if n E U’ then K,, (a) = Kg?(b)-’ for some b E Uz. Then (a, b) E 49, and 
so di is not empty. Moreover, this same argument implies that C’ (A:) = K,, (U’ ), and, 
by (ii), this is dense in G. 0 

Lemma 4.4. 
(i) Let U be a dense open subset of G2’, where r > 1. Then for almost every c E G, the 

set K;’ (c) fl U is a dense open subset of K;’ (c). 
(ii) If U is a dense G-invariant open subset of G” then for almost every c E G, the set 

l7cGj.r (e) n (U x G) is a dense open subset of l7c$‘, (e). 
(iii) With notation as in Lemma 4.3, the isotropy group of the conjugation action of G on 

both fl&!.g, (e) and n,;!, ,,~2 (e) is Z(G) on a dense open set, for almost every c E G. 
< 

Proof. (i) Let U” be the set of points in G*’ where the mapping K, is a submersion. By 
Facts 4.1 (ii) and (iii), U” contains as a subset the dense open set of all points where the 
isotropy of the G-action is Z(G). In particular, U” is a dense open subset of G2’ and so 
K, (74’) is a dense open subset of G. Applying Corollary 3.2 to the function K, (U” : U” + 
K,(U’), there is a subset U’ of G, of full measure in K,(U’) and hence of full measure 
in G, such that for every c E U’, the set (K,IU”)-’ (c) f’ 24 is a dense open subset of 
(K, IU’)-’ (c). To conclude, we note that by Sard’s theorem, almost every point in G is a 
regular value of K,, and so K;’ (c) = (K, ILAo)- (c) for almost all c E G. 

(ii) Recall that IT, ,r : G2’ x 0,. + G : (p, x) H xK,(p). So 17T:,r(e) consists of all 

points (q, tct-‘) E G2’ x G, where t runs over G, for which K,(q) = tc-' t-' . Thus such 
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a point can be expressed as f(t-‘qt, t), where f : K;‘(c) x G + &i,,(e) : (p, x) H 

(xpx-’ , xcx -I). Thus f is a continuous surjection and so maps any dense open set onto 
a dense subset of n&(e). In particular, by (i), for almost every choice of c E G, the set 

(Kg’ (c) fl U) x G is mapped by f onto a dense subset of 17;i,1 (e). To complete the proof, 

we need now only observe that, since U is G-invariant, f maps (K;’ (c) n U) x G onto 
the (open) set n&‘,,(e) n (U x G). 

(iii) This follows from (ii) by taking U to be the dense open subset of G*Ri where the 
isotropy group is Z(G), and by using the fact that if VI and V2 are sets of full measure in 
the compact group G then so is VI fl V2-‘. 0 

Recall that for the compact oriented surface JCi, having one boundary component a Ei 
and genus gi, the moduli space of flat G-connections, with boundary holonomy in a given 
conjugacy class 0 in G, is M:, (0) = l7g$ (e)/G. Further, M%i (O>O denotes the subset 

of M$, (0) corresponding to the points in n,$ (e) where the isotropy of the G-action is 
Z(G). As a consequence of Lemma 4.4 we have 

Proposition 4.5. There is a subset F of G of full measure such that for every conjugacy 
class 0 which contains a point in F, M”c, (O)O is a dense open subset of Mi, (0). 

5. Proof of the sewing formula 

Let fi be a continuous G-invariant function on G*gi x G, for i = 1,2, and let f be the 
function on G*g given by 

f:G 2g1+2g2 + R : (a, b) H fl (a, Kg,(a)-‘) f2(b, KgZ(b)-I). (5.la) 

The moduli space of flat G-connections on the compact oriented genus g surface C is 
given by 

MO = do/G, where do = Kg’ (e), (5.lb) 

and the action of G on K;’ (e) is the usual conjugation action. The subset of do consisting 

of all points where the isotropy of the G-action is Z(G) will be denoted AZ, and the 
corresponding subset of MO by Mt. 

For the compact oriented surface .Ei, having one boundary component 8 .Ei and genus 
gi > 1, the moduli space of flat G-connections having holonomy around a.Ei in a fixed 
conjugacy class 0 in G, is 

(5.lc) 

where l70,~; is the map 

17e,Ri : G2gi x 0 -+ G : (al, bl,. . . ,ag,, bRi,c) I-+ cKs;(al, bl,. . . ,agi, bRi) 

(5.ld) 
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Denote by fl;.\; (e)u the subset of n,Lj (e) where the isotropy of the G-action is Z(G), and 

by JU”,~ (O)o the corresponding subset of M’& (0). It is readily verified that if 0 passes 

through a regular value of Kg; then l7;.‘,, (e) is a submanifold of G2ng x 0. 

There is a standard symplectic form n on the manifold Mz = A!$ G, arising from Yang- 
Mills theory [1,14]. There is also a symplectic form iz(- on the moduli space M’$, (O)O. 

The pullback of n to di via the quotient projection At + M’,’ is the restriction to AZ 
of a smooth 2-form on G2R, which has been determined explicitly in [8] (see also [7]). 
It has been proven [ 11,121 that there is a dense open subset V of G such that for every 
conjugacy class 0 in G passing through some point in D, there is a symplectic form ??(-I on 
M%, (0)~‘. The definition, as well as explicit formulas and relevant results, are contained 

in Theorem 3.6 of [ll], and Sections 6.3 and 7.9 of [ 121. The only properties of 2, which 
will be used in the present work will be summarized below. 

Let Oc be the conjugacy class through a point c E G. Consider the orbit map of the 
G-action through any p E l7,‘,,; (e): 

Then, because the metric on the Lie algebra of G is Ad-invariant, the determinant det vi(x) 

is independent of x and so depends only on the projection p of p on the quotient M$, (0) = 

l7;’ R, (e)/G. Thus we may and will view det v;(x) as a function of i E M%, (0). Simi- 

larli we will view det d(n,,,;)z also as a function of i E MO,, (0). 

If c E G we have the map Ad(c) : g -+ g. Since [ker(Ad(c-‘) - l)] = [ker(Ad(c) - l)], 

we have [ker(Ad(c) - 1)11 = Im(Ad(c) - 1). Thus if c +! Z(G) then (Ad(c) - I))’ maps 
the non-zero space (Ad(c) - l)(g) isomorphically onto itself. By det(Ad(c) - l)-’ we 

shall mean the determinant of (Ad(c) - I)-’ as a map of (Ad(c) - l)(g) onto itself. _ 
We will use the following results from [9] and [ 121: 

Theorem 5.1. Let g, gi be positive integers. Then, with notation as above, the following 
hold. 

0) [9] For any G-invariant continuousfunction f on do = K,;’ (e), 

s M” Jdvol,= ’ 1 ’ da, 
* vol (G/Z(G)) At I det dK,*l 

(ii) 

where do is the Riemannian volume measure on dz induced by the metric inherited 
from the bi-invariant metric on G, and f is the function induced on MO by f. 
(Lemma 7.4 in [12]) If c E G is any regular value of K,; then 

(5.le) 

det y; 

det d”&.s, 
= Pf(J2(+<) det[(l - Adc)-‘I-“‘, (5.X) 

where Pf (Be,.) = and det ZU, is the determinant of the matrix of the 

2-form C?, with respect to any orthonormal basis. 
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Forgl,g2? l,andg=gl+g2,let 

4 %kf (U’ x U2) fl K;‘(e) and Mz ‘%f d/G, (5.k) 

where U’ is the subset of G2s’ 1 consisting of all points where the isotropy of the conjugation 

action of G is Z(G). In Lemma 4.3 (iii) we showed that 

4 = (Ut x tr2) n K;‘(e), (5lh) 

where Ui is the dense open subset of G2gl given by Ui = Ki’ (Ut2) n U’ , and we also 

showed in Lemma 4.3(iv) that the set Ut2 = Cl (4) is dense and open in G. 
Recall that MO, (O)o is the manifold consisting of all points of M’& (0) = 17(G.Li (e)/G 

corresponding to points on &,‘,, (e) where the isotropy group is Z(G). 

Theorem 5.2. Let f, f I, f2 be as above, and denote by the same letters the corresponding 
inducedfunctions on the moduli spaces. Then 

s Jdvoln= ss, dc 
0 

det(1 - Adc-‘)-I 
s 

(5.2a) 
M$., (@<)o 

_f~ dvol,@. c s M;* (@<-I )o 
f2 d ~01 zz, 

where dc is unit-mass Haar measure on G, and vol (T) is the Riemannian volume of a 
maximal torus T in G. The integrand is meaningful on a dense open subset of G. 

Proof. By Theorem 5.1, since Mz c Mt, we have 

s MO fdvolF= ’ / f da, 
n vol (G/Z(G)) A; I det dK,*I 

(5.2b) 

where da is the Riemannian volume measure on 4 = Kg’(e) n (L/l x l.42). 
By Proposition 3.1, we can disintegrate the integral on the right side with respect to the 

function CI : di + Cl (A:) = Ui2 c G, to obtain 

J Mofdvolz= ’ 1 vol (G) dc 
0 vol (G/Z(G)) urz 

dot 
f I det dK;I I det(d(Ct l&)*1 1 (5.2~) 

where da, denotes Riemannian volume on (Cl l&)-t ( c , and Ut 2 is the dense open subset ) 

of G given by Ut2 = Cl (A:). 
For each c E U12, we have the natural identification 

(c,@-‘(c) 2: (K,‘(c) nul) x (K,‘(cC’) nU2). 

This is an isometry when the manifolds on both sides are equipped with the Riemannian 
metrics inherited from G2R. 
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By Lemma 2.3 we have, at any point in (K;‘(c) flZ4)) x (K;‘(c-‘) n Z42), 

I det dCTl[ det dC;I = 1 det dK,*II det d(Cr I&>*/ 

Let CT: be the Riemannian volume measure on K,T ’ (c). 
Then, combining (5.2c,d), we have 

281 

(5.2d) 

s ,Jdvoln= ’ j- vol (G) dc 
0 vol (G/Z(G)) u,? 

X 
.f;“.f; 

U) I det dK,*, II det dK& I 
da,! da(:_, , 

I 
(5.2e) 

where, for i = 1, 2, the function fi* on G2Rl is given by 

f,“(P) = fi (p, K,i (PI-‘) 

Now by Proposition 3.3, for c a regular value of Kgi , 

(5.20 

vol(0,) s fi* 
da; = 

s , 

fi 

K,;’ ~1) I detWg, )* I IT~;~‘,, ce) I det(dnti( ,gi )*I do;’ 

where n~-,~,~, : G2R1 x 0, + G : (a, x) H x K,, (a), with 0,. being the conjugacy class 
of c in G, 0:: on the right side is the Riemannian volume on ‘7c;c!,1.4i (e). 

THUS, with .?47 = Ui x G, 

s ,ti,,f dvolz= ’ 1 vol(G) d c  

0 
vol (G/Z(G)) U,z vol (Oc) vol (@,.-I) 

s 

fl da, 
s 

f2 da,-I 
n$,, (emu; I det dni+cI n(;‘_, r,(e)m; 1 det dnG,_, ,fi2 I (. (I& 1 (5.2g) 

The group G acts by conjugation on the space n,!,,, (e). By Lemma 4.4 (iii), the subset 

n&‘,s, (e)() of “(r$‘,g, (e) where the isotropy group is Z(G) is dense and open in n;,‘,,, (e), 

when c lies in a certain set of full measure in G. Also, by Lemma 4.4(ii), the set “$l,s, (e) Wj” 

is dense and open in l7&, , (e) for almost every c E G. Intersecting these sets of c’s with 
Urz. we have then by Lemma 3.4, for almost every c E Urz: 

s fi dcj fi da; fi do: 

u(;(I,,~ WW,: I det dn,“,l = II~;~~,~, w I det dfl,*,l = s s nc;t!,Ri w. I det dJ%l 

= vol (G/Z(G)) 
s fi 

det yi 

n-’ C_], ,,~, (c)o/G det dfl,T< ,R, 
dz’ 

= vol (G/Z(G)) 
s MO,, ((-)<)o 

fi 
det y,‘, 

det dfl&,, 
da’ (5.2h) 
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where, for each p E nJ,‘,,, (e), yp : G + 17gi,gi (e) : x H xpx -’ is the orbit map, and 

~7: is the Riemannian volume on fl&,i (e) / G . 
By Theorem 5.1 (ii), 

det yi 

det dfl&r,Ri 
= Pf(zo,) det[(l - Adc)-‘I-‘/*, (5.2i) 

where Pf = & is the Pfaffian, as explained in Theorem 5.1 (ii). 
Now on J7&1,Bi (e)/G the Riemannian volume 5’ and the symplectic volume are related 

by 

dvolno 
-c 

= Pf(&,) da’ (5.2j) 

so 

s Jdvolg=$$$k dc 
[det(l - Ad(c))-’ det(1 - Ad(c-‘))-‘I-‘/* 

0 vol(0,) vol (@,-I) 

X fl dvolql, f2 dvol- (5.2k) 
“‘ s M’(@)-, )o 1 Q(.,C_, . 

If c E G then the map G --f 0, : x H xcx-’ induces the diffeomorphism 

yC : G/Z(c) + 0, : xZ(c) I+ XX-‘, 

where Z(c) is the centralizer of c. The derivative of yC is given by (Ad(c-‘) - 1) 1 L(Z(c))‘, 
where L(Z(c)) is the Lie algebra of Z(c) in g. The Riemannian volume of the conjugacy 
class 0, is therefore 

vol(0,) = vol (G/Z(c))[det(l - Ad(c-‘))-‘I-‘. (5.21) 

Using this in (5.2k) and using the fact that there is a dense open subset of G where Z(c) is 
a maximal torus in G, we have 

s MOfdvol =sl dc det(1 - Ad(c))-’ 
0 

fl d vol 
s 

f2dvol , MOW-I h 1 
where d vol always denotes integration with respect to symplectic volume, and vol (T) is 
the Riemannian volume of any maximal torus in G. We have also used det( 1 -Ad(c-I))-’ = 
det(1 -Ad(c))-‘. 0 

Notes. 

(i) Sewing (or “cutting”) formulas have been used by Witten (for instance (4.30) and 
(4.68) in [ 141) to compute the volume of MO. 
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(ii) Comparison of volumes shows that Theorem 5.2 holds with Mi replaced by M!. 
However, there ought to be an elementary argument showing that Mi is dense in Mf . 

For X in the Lie algebra of G, let Z(X) = (a E G : Ad(a)X = X). The difference 
d~d~maybecontainedintheunionofthesets[~Z(X)~s’a-’ xbZ(Y)b-‘]nK;‘(e) 
with a, b running over G and X, Y running over non-zero elements of a maximal torus 
of G. Then a heuristic argument shows that dt\dt is contained in a subset of positive 
codimension in dt, and thus di is dense in Ai, and hence Mi is dense in M’,‘. A 
spin-off of this would be that we would be able to compute the symplectic volume 
Mt by using the rigorously established (in [12]) formulas for vol (M’(O,)o). We 
formulate all this rigorously for the case G = SU(2) in the next section. 

(iii) Suppose G is not simply connected, and let p : G --+ G be the universal covering. 
Consider the lifted product commutator map 

kR : G2R + ti : (al, b’, . . . , ug, bR) H ~,‘ii,‘b@, . . .~,‘Z;‘&ii,, 

where X E G is any element of G projecting to x E G; the map Kg is well-defined 
because ker(p: G + G) is contained in the center of G. Then the moduli space of 
flat connections on any particular principal G-bundle rr: P --+ Z is not K;’ (e), but 

Z?;’ (z), where z is an element of ker p determined by, and determining, the topology 
of the bundle P. Then a version of Theorem 5.2 holds with the integrals in the integrand 
on the right in (5.2a) being over moduli spaces of flat G-connections over the surfaces 
Ei and with c (now running over G) replaced by cz in one of the integrals in the 
integrand on the right in (52a). 

6. The case G = SU(2) 

It was proven in [4], using the quantum theory, that, when G = SU(2), Theorem 5.2 holds 
with Mz replaced by Mt (recall that Mt = dz/G, where At is the subset of do where the 
isotropy group is Z(G)). We shall here prove the same result directly. In view of Theorem 5.2, 
it will suffice to prove that Mt is dense in Mt. This is achieved in the following. 

Proposition 6.1. Let G = SU(2). Then Mi is dense in Mt. 

Proof. Recall that 4 = (U’ x U2) fl K;’ (e), where 24’ is the subset of G*“i consisting of 

all points where the isotropy group of the conjugation action is Z(G). On the other hand, At 
is the subset of K;’ (e) consisting of all points where the isotropy group of the conugation 

action of G is Z(G). Both dz and di are (2g - 1) dim(G)-dimensional submanifolds of 
G*g, contained in Kg’ (e), and di c At. Let A; = dt\dt. Thus each point of A: lies in 

Z(X)2g’ x Z(Y)2s2, for some non-zero X, Y in the Lie algebra L(G) of G (here Z(H) is 
the subset of G consisting of all x such that Ad(x)H = H). Now for SU(2), the centralizer 
Z(X) is a maximal torus for any non-zero X E L(G), and so, in particular, K,, equals e on 
such Z(X)*gl . Thus, if T is a maximal torus in SU(2), then 

dy = Ua.~EG(uT2R’u-1 x bT2g2b-‘)\U,,cuT2gu-‘. 



290 A. Sengupta/Journal of Geometry and Physics 32 (2000) 269-292 

The map 

f : W(2) x SU(2) x T2R’ x T2g2 + G2g : (a, b, t, s) H (ata-‘, bsb-‘) 

induces, in the obvious way, a map 

f1 : SlJ(2)lT x SU(2)/T x T2g1 x T2g2 

+ G2g : (UT, bT, t, s) H (am-‘, bsb-‘). 

Let S = f,-’ (G2s\{&Z12g). Then 

S = (SU(2)/T)2 x [(T2gl x T2R2)\{hZ}2g]. 

The map ft carries S one-to-one onto a subset containing dy . The derivative off is readily 
computable and it is then verified that ft is an immersion on S. Moreover, fi maps S 
homeomorphically onto its image; for if Ct is a closed subset of S then Ct = C n S for 
some closed (hence compact) subset C of (SU(2)/ T)2glf2g2 x T2glf2g2, and so ft (Cl) = 
f~ (C) II fl (S) is closed in ft (S). Thus the immersion ft ] S: S + G2g maps the manifold 
S homeomorphically onto ft (S). Therefore, ft (S) is a submanifold of G2s and ft 1 S is a 
diffeomorphism of S onto ft (S). Thus, since dim SU (2) = 3 and dim T = 1, 

dimft(S) =dimS=2+2+2gt f2g2 =4+2g. 

Let D be the diagonal in (SU(2)/T)2, and S’ = S\[D’ x (T2g1+2g2\{kZ}2g)]. Thus S’ is 
an open subset of S. We have ft (S’) = A?. Thus fi IS’ : S’ + A’f is a diffeomorphism. 
Thus dim(d$ = 2g + 4. On the other hand, dim At = (2g - 1) dim(G) = 6g - 3, since 
G = SU(2) has dimension 3. So the codimension of A: in dz is 4g - 7, which is 2 1, since 
g > 2. Therefore, 4 is a dense (open G-invariant) subset of A:. Hence ,Vfi = &/G is a 
dense open subset of Mt. 0 

As an immediate consequence, it follows that for G = SU(2), Theorem 5.2 holds with 
Mi replaced by the full moduli space Mt. 

If we view SU (2) as a 3-sphere in R4 in the usual way, its radius is [ vol (SU (2))/2n2]““, 
and so the “volume” (i.e. length) of a maximal torus if 

vol (T) = 2rc 
vol (SU(2)) f 1 2x2 ’ 

where the volume of SU(2) is with respect to the fixed Ad-invariant metric (., ‘): on the 

Lie algebra g of SU (2). On the other hand, the mapping eie - H Ad ($ .!,O) is a 

homomorphism of the circle group onto the group of rotations in a plane in g and has kernel 
(Z!Z 1); therefore, Ad c is rotation by angle 20, in a plane orthogonal to the maximal torus of 
c, and so 

] det( 1 Ad c)-’ I det 

’ 

-s~~~~ 

sin 

20, 

-1 
1 

- = 
=--- 

’ - - c 1 cos 2e, I 4 sin2 0, 
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Substituting these values, as well as #Z(G) = 2, in the disintegration formula (5.2a), we 
obtain, with ft and f2 equal to 1, 

vol(MO) = $ [ vo1z(2))]‘s, dc~vol(M=,(W’))vol(M=I((-)r.~I)) 

(6.1) 

This formula was proved in [4] in two ways, first by using the fact that the symplectic volume 
measures on the moduli spaces arise as limits of the quantum gauge field measures, and 
second by simply substituting known values of the volumes of the various moduli spaces 
involved and verifying that the right side of (6.1) works out to be equal to the known value 
of the left side. The determination of the symplectic volumes, especially of the left side 
of (6.1), is however, a highly non-trivial matter. In fact, now that we have proven (6. I) by 
more or less “elementary” means, we can turn this “second proof” in [4], just alluded to, 
on its head and obtain the value of the symplectic volume vol(Mu) by substituting in on 
the right side of (6.1) the values of vol (ME, (0,)) computed rigorously in [ 121. Since this 
is really Proof II of Theorem 4.5 of [4] run in reverse, we will recall here only part of the 
argument. 

For c 4 (I, -I}, the symplectic volume of ME, (0,) has been calculated rigorously in 
[ 121 (Eq. (9.1.1)) (this value coincides with that computed by Witten [ 141 (Eq. (4. I 16)) for 
punctured surfaces): 

vol (Mz, (O,.)) 

I 2n(n -&) [ V~~~(~)‘li if g; = 1. 
= 

4nsin8, [ vo1s(2))]’ v~l(S(i(?))‘~~-‘$~ if g; 12. (6’2) 

Assume first that each gi 2 2. Substituting in the volumes of ME, (O,.), as given by (6.2) in 
the right side of (6.1) yields, after algebraic simplicification (using, in particular, g t +g: = g, 
and @,.-I = &.), 

right side of (6.1) = 2[ vol (SU(2))]2g-2 @+cK+)dc 

(6.3) 

Since each gi 2 2 and 1 xn (.) 1 5 n, the series in the integrand on the right side are absolutely 
convergent. Using the Schur orthogonality relation lo x,?(c)x,, (c-l) dc = a,,, (here a,,, 
equals 0 if n # m, and equals 1 if n = m), to simplify the right side of (6.3), we obtain 

1 
vol (MO) = 2[ vol (SU(2))12g-2 E - 

n=, n2gp2’ 
(6.4) 

(where, on the right, vol refers to the volume of SU(2) relative to the metric (. , .)fi on its 
Lie algebra), which agrees with Witten’s formula (4.72) in [ 141. If either gt or g2 equals 1 
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the above argument needs modification, but the volume formula still works out to (6.4) (for 
details, see Proof II of Theorem 4.5 in [4]). 

Modifications of the above arguments work also for G = S 0 (3) and the volumes of the 
corresponding moduli spaces of flat connections can be worked out similarly. 
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